Quiz Preparation: Converting Values

©2025 Chris Nielsen – www.nielsenedu.com

1. Write the appropriate vocabulary word next to its definition.

a)	nibble	a set of 4 binary digits
b)	byte	a set of 8 binary digits
c)	binary	a name for the base-2 number system
d)	hexadecimal	a name for the base-16 number system
e)	complement	an operation that inverts (or "flips") the bits of a binary number ($0 \leftrightarrow 1$)
f)	convert	to change from one form to another, for example from binary to decimal

- 2. Given the binary number 1110_1001, make the conversions specified below. It is easy to make small mistakes, so show your work for partial marks.
 - a) Convert the value to decimal, assuming the byte represents an *unsigned number*.

bit	position	7	6	5	4	3	2	1	0
place	exponential	2 ⁷	2^{6}	2 ⁵	2^{4}	2 ³	2^2	2^1	2^{0}
value	decimal	128	64	32	16	8	4	2	1
binary	digits (bits)	1	1	1	0	1	0	0	1
sum of dec	rimal bit values	128 -	+ 64 +	32 +	8 + 1	= 233			

b) Convert the value to decimal, assuming the byte represents a *sign and magnitude*.

bit	position	-/+	6	5	4	3	2	1	0
place	exponential		2^{6}	2 ⁵	2^{4}	2^3	2^2	2^1	2^{0}
value	decimal		64	32	16	8	4	2	1
binary	digits (bits)	1	1	1	0	1	0	0	1
sum of dec	rimal bit values	- (64	1 + 32	+ 8 +	1) =	-105			

c) Convert the value to decimal, assuming the byte represents a *two's complement* number.

place value in decimal	128	64	32	16	8	4	2	1
original two's complement	1	1	1	0	1	0	0	1
complement the bits (flip)	0	0	0	1	0	1	1	0
add one (+1)	0	0	0	1	0	1	1	1
sum of decimal bit values	16 +	- 4 +	2 + 1	= 23	; neg	ated	= -2 3	

d) Convert the value to hexadecimal.

1	1	1	0	1	0	0	1
	I	Ξ			g)	

Quiz Preparation: Converting Values

©2025 Chris Nielsen - www.nielsenedu.com

- 3. Again working with the same binary number, 1110_1001, complete the tables below. It is easy to make small mistakes, so show your work for partial marks.
 - a) Perform a *left shift* by <u>two bit positions</u>, then convert the result to decimal, assuming the byte represents an *unsigned number*.

place value in decimal	128	64	32	16	8	4	2	1
original unsigned number	1	1	1	0	1	0	0	1
logically shifted unsigned number	1	0	1	0	0	1	0	0
sum of decimal bit values	128	+ 32	+ 4 =	164				

b) A *left shift* by <u>two bit positions</u> should be equivalent to multiplication by four (×4); however the value calculated in part (3a) is obviously not even close to four times the value calculated in part (2a). What word describes what happened.

overflow

c) Perform a *logical right shift* by <u>two bit positions</u>, then convert the result to decimal, assuming the byte represents an *unsigned number*.

place value in decimal	128	64	32	16	8	4	2	1
original unsigned number	1	1	1	0	1	0	0	1
logically shifted unsigned number	0	0	1	1	1	0	1	0
sum of decimal bit values	32 + 16 + 8 + 2 = 58							

d) *Perform a logical right shift* by two bit positions, as was done in part (c), then convert the result to *hexadecimal*.

0	0	1	1	1	0	1	0
	3	3			A	A	

e) What mathematical operation (operator and operand) is equivalent to a *logical right shift* by two bit positions, assuming the byte represents an *unsigned number*.

operand (binary)	operator	operand (decimal)
1110_1001	÷	4 (or: 2 ²)

Note: the reason this mathematical expression isn't exactly true is due to the *loss of precision* as bits are shifted out of the number, and lost.

f) Perform an *arithmetic right shift* by two bit positions, then convert the result to decimal, assuming the byte represents a *two's complement* number.

place value in decimal	128	64	32	16	8	4	2	1
original unsigned number	1	1	1	0	1	0	0	1
arithmetically shifted signed number	1	1	1	1	1	0	1	0
one's complement	0	0	0	0	0	1	0	1
two's complement	0	0	0	0	0	1	1	0
sum of decimal bit values	4 + 2 = 6; negated = -6						•	